LISTSERV mailing list manager LISTSERV 16.0

Help for SOCNET Archives


SOCNET Archives

SOCNET Archives


SOCNET@LISTS.UFL.EDU


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

SOCNET Home

SOCNET Home

SOCNET  October 2019

SOCNET October 2019

Subject:

selected Latest Complexity Digest Posts (fwd)

From:

Barry Wellman <[log in to unmask]>

Reply-To:

Barry Wellman <[log in to unmask]>

Date:

Fri, 4 Oct 2019 13:25:56 -0400

Content-Type:

MULTIPART/MIXED

Parts/Attachments:

Parts/Attachments

TEXT/PLAIN (106 lines)

*****  To join INSNA, visit http://www.insna.org  *****

clearing up backlog

   Barry Wellman


   Step by step, link by link, putting it together--Streisand/Sondheim
        The earth to be spannd, connected by network--Walt Whitman
              It's Always Something--Roseanne Roseannadanna

             A day like all days, filled with those events
          that alter and illuminate our times--You Are There!
  _______________________________________________________________________
   Director, NetLab Network      			            FRSC
         Founder, International Network for Social Network Analysis
   NETWORKED: The New Social Operating System  Lee Rainie & Barry Wellman
   https://urldefense.proofpoint.com/v2/url?u=http-3A__www.chass.utoronto.ca_-7Ewellman&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=M01NgkrZZo8w1hc-teHALCFBN9vAoiAvTcVbkhs4cO8&e=             https://urldefense.proofpoint.com/v2/url?u=http-3A__amzn.to_zXZg39&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=TsBCCGI0FsA-MtcP3B3myLHFkWKb9PC67KVTF1IFay4&e= 
              https://urldefense.proofpoint.com/v2/url?u=https-3A__en.wikipedia.org_wiki_Barry-5FWellman&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=sQHnzg_hREwK3KOzphOJXeg_s7POrWru4XJeHBD3Feg&e= 
   _______________________________________________________________________


---------- Forwarded message ----------
Date: Mon, 12 Aug 2019 11:01:32 +0000
From: "[utf-8] Complexity Digest" <[log in to unmask]>
Reply-To: [log in to unmask]
To: "[utf-8] Barry" <[log in to unmask]>
Subject: [utf-8] Latest Complexity Digest Posts

Learn about the latest and greatest related to complex systems research. More at https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Dfdc1677c97-26e-3D55e25a0e3e&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=nEes-PaOEvOC9Vcbvoy-zz_8LJ3k6f1XW2M-MeXbvyM&e= 


Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial clusters

    https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Dd491847cac-26e-3D55e25a0e3e&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=xe-a8vWKBvnDpCqi87PYCgCjAgRRvxX7KdShRQ2_ILI&e= 

Groups of firms often achieve a competitive advantage through the formation of geo-industrial clusters. Although many exemplary clusters are the subjects of case studies, systematic approaches to identify and analyze the hierarchical structure of geo-industrial clusters at the global scale are scarce. In this work, we use LinkedIn  s employment history data from more than 500 million users over 25 years to construct a labor flow network of over 4 million firms across the world, from which we reveal hierarchical structure by applying network community detection. We show that the resulting geo-industrial clusters exhibit a stronger association between the influx of educated workers and financial performance, compared to traditional aggregation units. Furthermore, our analysis of the skills of educated workers reveals richer insights into the relationship between the labor flow of educated workers and productivity growth. We argue that geo-industrial clusters defined by labor flow provide
useful insights into the growth of the economy.


Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial clusters
Jaehyuk Park, Ian B. Wood, Elise Jing, Azadeh Nematzadeh, Souvik Ghosh, Michael D. Conover & Yong-Yeol Ahn
Nature Communications volume 10, Article number: 3449 (2019)

Source: https://urldefense.proofpoint.com/v2/url?u=http-3A__www.nature.com&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=bLpEer9DyG61FsEpVTrJ2urPtcfN8jpW3Go1Lq-OaRE&e=  (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D7e9adc9e34-26e-3D55e25a0e3e&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=ohDNodAMGR_a0J8OLRq2tOuL43-ggfrn_TD55PeXA_w&e= )



Fundamental Structures in Dynamic Communication Networks

    In this paper I introduce a framework for modeling temporal communication networks and dynamical processes unfolding on such networks. The framework originates from the realization that there is a meaningful division of temporal communication networks into six dynamic classes, where the class of a network is determined by its generating process. In particular, each class is characterized by a fundamental structure: a temporal-topological network motif, which corresponds to the network representation of communication events in that class of network. These fundamental structures constrain network configurations: only certain configurations are possible within a dynamic class. In this way the framework presented here highlights strong constraints on network structures, which simplify analyses and shape network flows. Therefore the fundamental structures hold the potential to impact how we model temporal networks overall. I argue below that networks within the same class can be meaningfully
compared, and modeled using similar techniques, but that integrating statistics across networks belonging to separate classes is not meaningful in general. This paper presents a framework for how to analyze networks in general, rather than a particular result of analyzing a particular dataset. I hope, however, that readers interested in modeling temporal networks will find the ideas and discussion useful in spite of the paper's more conceptual nature.


Fundamental Structures in Dynamic Communication Networks
Sune Lehmann

Source: arxiv.org (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D8820d6feb6-26e-3D55e25a0e3e&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=WzjVW0wa9esdkmFqUKtGNvNbHEi_oHJB-fK3bcgDKE8&e= )




Optimal foraging and the information theory of gambling

    At a macroscopic level, part of the ant colony life cycle is simple: a colony collects resources; these resources are converted into more ants, and these ants in turn collect more resources. Because more ants collect more resources, this is a multiplicative process, and the expected logarithm of the amount of resources determines how successful the colony will be in the long run. Over 60 years ago, Kelly showed, using information theoretic techniques, that the rate of growth of resources for such a situation is optimized by a strategy of betting in proportion to the probability of pay-off. Thus, in the case of ants, the fraction of the colony foraging at a given location should be proportional to the probability that resources will be found there, a result widely applied in the mathematics of gambling. This theoretical optimum leads to predictions as to which collective ant movement strategies might have evolved. Here, we show how colony-level optimal foraging behaviour can be achieved by
mapping movement to Markov chain Monte Carlo (MCMC) methods, specifically Hamiltonian Monte Carlo (HMC). This can be done by the ants following a (noisy) local measurement of the (logarithm of) resource probability gradient (possibly supplemented with momentum, i.e. a propensity to move in the same direction). This maps the problem of foraging (via the information theory of gambling, stochastic dynamics and techniques employed within Bayesian statistics to efficiently sample from probability distributions) to simple models of ant foraging behaviour. This identification has broad applicability, facilitates the application of information theory approaches to understand movement ecology and unifies insights from existing biomechanical, cognitive, random and optimality movement paradigms. At the cost of requiring ants to obtain (noisy) resource gradient information, we show that this model is both efficient and matches a number of characteristics of real ant exploration.


Optimal foraging and the information theory of gambling
Roland J. Baddeley , Nigel R. Franks and Edmund R. Hunt

JRS Interface

Source: royalsocietypublishing.org (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3De07eca9aab-26e-3D55e25a0e3e&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=m1DtJTjMcolb69pO5kOkMu2ssG6xdUME82LWnnfWKlY&e= )



Data-driven strategies for optimal bicycle network growth

    Urban transportation networks, from sidewalks and bicycle paths to streets and rail lines, provide the backbone for movement and socioeconomic life in cities. These networks can be understood as layers of a larger multiplex transport network. Because most cities are car-centric, the most developed layer is typically the street layer, while other layers can be highly disconnected. To make urban transport sustainable, cities are increasingly investing to develop their bicycle networks. However, given the usually patchy nature of the bicycle network layer, it is yet unclear how to extend it comprehensively and effectively given a limited budget. Here we develop data-driven, algorithmic network growth strategies and apply them to cities around the world, showing that small but focused investments allow to significantly increase the connectedness and directness of urban bicycle networks. We motivate the development of our algorithms with a network component analysis and with multimodal urban
fingerprints that reveal different classes of cities depending on the connectedness between different network layers. We introduce two greedy algorithms to add the most critical missing links in the bicycle layer: The first algorithm connects the two largest connected components, the second algorithm connects the largest with the closest component. We show that these algorithms outmatch both a random approach and a baseline minimum investment strategy that connects the closest components ignoring size. Our computational approach outlines novel pathways from car-centric towards sustainable cities by taking advantage of urban data available on a city-wide scale. It is a first step towards a quantitative consolidation of bicycle infrastructure development that can become valuable for urban planners and stakeholders.


Data-driven strategies for optimal bicycle network growth
Luis Natera, Federico Battiston, Gerardo I˝iguez, Michael Szell

Source: arxiv.org (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D729a307b91-26e-3D55e25a0e3e&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=o0_Wg8-sexFJ062gFS16hYZpylJtkcQZdWNdICq4ZEo&e= )


==============================================
Sponsored by the Complex Systems Society.
Founding Editor: Gottfried Mayer.
Editor-in-Chief: Carlos Gershenson.

You can contribute to Complexity Digest selecting one of our topics (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Dc11548aef1-26e-3D55e25a0e3e&d=DwIFAw&c=sJ6xIWYx-zLMB3EPkvcnVg&r=yQQsvTNAnbvDXGM4nDrXAje4pr0qHX2qIOcCQtJ5k3w&m=Tn4i1t_2APG2TlaWDq63DBYxdZ0ZbIqGKYFBYKWpJVc&s=Hf1Rx_erlQSHrUWkty5fRoVuUvWItycgjUcr97jv5KA&e=  ) and using the "Suggest" button.
==============================================
==============================================


_____________________________________________________________________
SOCNET is a service of INSNA, the professional association for social
network researchers (http://www.insna.org). To unsubscribe, send
an email message to [log in to unmask] containing the line
UNSUBSCRIBE SOCNET in the body of the message.

Top of Message | Previous Page | Permalink

Advanced Options


Options

Log In

Log In

Get Password

Get Password


Search Archives

Search Archives


Subscribe or Unsubscribe

Subscribe or Unsubscribe


Archives

October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008, Week 62
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
December 2004
November 2004
October 2004
September 2004
August 2004
July 2004
June 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
November 2003
October 2003
September 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
November 2002
October 2002
September 2002
August 2002
July 2002
June 2002
May 2002
April 2002
March 2002
February 2002
January 2002
December 2001
November 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001

ATOM RSS1 RSS2



LISTS.UFL.EDU

CataList Email List Search Powered by the LISTSERV Email List Manager