LISTSERV mailing list manager LISTSERV 16.0

Help for SOCNET Archives


SOCNET Archives

SOCNET Archives


SOCNET@LISTS.UFL.EDU


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

SOCNET Home

SOCNET Home

SOCNET  August 2015

SOCNET August 2015

Subject:

selected Latest Complexity Digest Posts (fwd)

From:

Barry Wellman <[log in to unmask]>

Reply-To:

Barry Wellman <[log in to unmask]>

Date:

Mon, 17 Aug 2015 09:38:02 -0400

Content-Type:

MULTIPART/MIXED

Parts/Attachments:

Parts/Attachments

TEXT/PLAIN (114 lines)

*****  To join INSNA, visit http://www.insna.org  *****




   Barry Wellman
  _______________________________________________________________________
   FRSC                 INSNA Founder               University of Toronto
   http://www.chass.utoronto.ca/~wellman           twitter: @barrywellman
   NETWORKED:The New Social Operating System.  Lee Rainie & Barry Wellman
   MIT Press            http://amzn.to/zXZg39        Print $14  Kindle $9
   _______________________________________________________________________


---------- Forwarded message ----------
Date: Mon, 17 Aug 2015 11:04:04 +0000
From: "[utf-8] Complexity Digest" <[log in to unmask]>
Reply-To: [log in to unmask]
To: "[utf-8] Barry" <[log in to unmask]>
Subject: [utf-8] Latest Complexity Digest Posts

Learn about the latest and greatest related to complex systems research. More at http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=1dc0ff9e99&e=55e25a0e3e

Introduction to the Modeling and Analysis of Complex Systems

    Introduction to the Modeling and Analysis of Complex Systems introduces students to mathematical/computational modeling and analysis developed in the emerging interdisciplinary field of Complex Systems Science. Complex systems are systems made of a large number of microscopic components interacting with each other in nontrivial ways. Many real-world systems can be understood as complex systems, where critically important information resides in the relationships between the parts and not necessarily within the parts themselves. This textbook offers an accessible yet technically-oriented introduction to the modeling and analysis of complex systems. The topics covered include: fundamentals of modeling, basics of dynamical systems, discrete-time models, continuous-time models, bifurcations, chaos, cellular automata, continuous field models, static networks, dynamic networks, and agent-based models. Most of these topics are discussed in two chapters, one focusing on computational
modeling and the other on mathematical analysis. This unique approach provides a comprehensive view of related concepts and techniques, and allows readers and instructors to flexibly choose relevant materials based on their objectives and needs. Python sample codes are provided for each modeling example.

http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=4492132e8b&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=202cc89c61&e=55e25a0e3e) , via CxBooks (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=f7db22c431&e=55e25a0e3e)




Non-parametric estimation of Fisher information from real data

    The Fisher Information matrix is a widely used measure for applications ranging from statistical inference, information geometry, experiment design, to the study of criticality in biological systems. Yet there is no commonly accepted non-parametric algorithm to estimate it from real data. In this rapid communication we show how to accurately estimate the Fisher information in a nonparametric way. We also develop a numerical procedure to minimize the errors by choosing the interval of the finite difference scheme necessary to compute the derivatives in the definition of the Fisher information. Our method uses the recently published "Density Estimation using Field Theory" algorithm to compute the probability density functions for continuous densities. We use the Fisher information of the normal distribution to validate our method and as an example we compute the temperature component of the Fisher Information Matrix in the two dimensional Ising model and show that it obeys the
expected relation to the heat capacity and therefore peaks at the phase transition at the correct critical temperature.


"Non-parametric estimation of Fisher information from real data"
Omri Har Shemesh, Rick Quax, Borja Mi˝ano, Alfons G. Hoekstra, Peter M. A. Sloot
arXiv:1507.00964 [stat.CO], 2014
http://unam.us4.list-manage2.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=807a26e561&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=47673b3e75&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=cf2dc48f37&e=55e25a0e3e)


Evolution of Self-Organized Task Specialization in Robot Swarms

    Many biological systems execute tasks by dividing them into finer sub-tasks first. This is seen for example in the advanced division of labor of social insects like ants, bees or termites. One of the unsolved mysteries in biology is how a blind process of Darwinian selection could have led to such highly complex forms of sociality. To answer this question, we used simulated teams of robots and artificially evolved them to achieve maximum performance in a foraging task. We find that, as in social insects, this favored controllers that caused the robots to display a self-organized division of labor in which the different robots automatically specialized into carrying out different subtasks in the group. Remarkably, such a division of labor could be achieved even if the robots were not told beforehand how the global task of retrieving items back to their base could best be divided into smaller subtasks. This is the first time that a self-organized division of labor mechanism
could be evolved entirely de-novo. In addition, these findings shed significant new light on the question of how natural systems managed to evolve complex sociality and division of labor.

Ferrante E, Turgut AE, DuÚ˝ez-Guzmßn E, Dorigo M, Wenseleers T (2015) Evolution of Self-Organized Task Specialization in Robot Swarms. PLoS Comput Biol 11(8): e1004273. http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=273811c224&e=55e25a0e3e ;

See it on Scoop.it (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=7ea4283a5c&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=1dd250c3a6&e=55e25a0e3e)



Automata networks model for alignment and least effort on vocabulary formation

    Can artificial communities of agents develop language with scaling relations close to the Zipf law? As a preliminary answer to this question, we propose an Automata Networks model of the formation of a vocabulary on a population of individuals, under two in principle opposite strategies: the alignment and the least effort principle. Within the previous account to the emergence of linguistic conventions (specially, the Naming Game), we focus on modeling speaker and hearer efforts as actions over their vocabularies and we study the impact of these actions on the formation of a shared language. The numerical simulations are essentially based on an energy function, that measures the amount of local agreement between the vocabularies. The results suggests that on one dimensional lattices the best strategy to the formation of shared languages is the one that minimizes the efforts of speakers on communicative tasks.

Automata networks model for alignment and least effort on vocabulary formation
Javier Vera, Felipe Urbina, Eric Goles

http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=5de3ace78b&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=4d7baca282&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=405e458781&e=55e25a0e3e)



Taming Instabilities in Power Grid Networks by Decentralized Control

    Renewables will soon dominate energy production in our electric power system. And yet, how to integrate renewable energy into the grid and the market is still a subject of major debate. Decentral Smart Grid Control (DSGC) was recently proposed as a robust and decentralized approach to balance supply and demand and to guarantee a grid operation that is both economically and dynamically feasible. Here, we analyze the impact of network topology by assessing the stability of essential network motifs using both linear stability analysis and basin volume for delay systems. Our results indicate that if frequency measurements are averaged over sufficiently large time intervals, DSGC enhances the stability of extended power grid systems. We further investigate whether DSGC supports centralized and/or decentralized power production and fi?nd it to be applicable to both. However, our results on cycle-like systems suggest that DSGC favors systems with decentralized production. Here,
lower line capacities and lower averaging times are required compared to those with centralized production.

Taming Instabilities in Power Grid Networks by Decentralized Control
Benjamin Schńfer, Carsten Grabow, Sabine Auer, JŘrgen Kurths, Dirk Witthaut, Marc Timme

http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=3bd285f46e&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=2b25a59f3d&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=8284982baa&e=55e25a0e3e)


Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks

    The financial crisis illustrated the need for a functional understanding of systemic risk in strongly interconnected financial structures. Dynamic processes on complex networks being intrinsically difficult to model analytically, most recent studies of this problem have relied on numerical simulations. Here we report analytical results in a network model of interbank lending based on directly relevant financial parameters, such as interest rates and leverage ratios. We obtain a closed-form formula for the   critical degree   (the number of creditors per bank below which an individual shock can propagate throughout the network), and relate failures distributions to network topologies, in particular scalefree ones. Our criterion for the onset of contagion turns out to be isomorphic to the condition for cooperation to evolve on graphs and social networks, as recently formulated in evolutionary game theory. This remarkable connection supports recent calls for a methodological
rapprochement between finance and ecology.

Smerlak M, Stoll B, Gupta A, Magdanz JS (2015) Mapping Systemic Risk: Critical Degree and Failures Distribution in Financial Networks. PLoS ONE 10(7): e0130948. http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=b2455fc065&e=55e25a0e3e ;

See it on Scoop.it (http://unam.us4.list-manage2.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=45b3145f16&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=1e82f6dcb3&e=55e25a0e3e)


==============================================
Sponsored by the Complex Systems Society.
Founding Editor: Gottfried Mayer.
Editor-in-Chief: Carlos Gershenson.

You can contribute to Complexity Digest selecting one of our topics (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=5019fb3235&e=55e25a0e3e ) and using the "Suggest" button.
==============================================
==============================================



_____________________________________________________________________
SOCNET is a service of INSNA, the professional association for social
network researchers (http://www.insna.org). To unsubscribe, send
an email message to [log in to unmask] containing the line
UNSUBSCRIBE SOCNET in the body of the message.

Top of Message | Previous Page | Permalink

Advanced Options


Options

Log In

Log In

Get Password

Get Password


Search Archives

Search Archives


Subscribe or Unsubscribe

Subscribe or Unsubscribe


Archives

December 2021
November 2021
October 2021
September 2021
August 2021
July 2021
June 2021
May 2021
April 2021
March 2021
February 2021
January 2021
December 2020
November 2020
October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008, Week 62
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
December 2004
November 2004
October 2004
September 2004
August 2004
July 2004
June 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
November 2003
October 2003
September 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
November 2002
October 2002
September 2002
August 2002
July 2002
June 2002
May 2002
April 2002
March 2002
February 2002
January 2002
December 2001
November 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001

ATOM RSS1 RSS2



LISTS.UFL.EDU

CataList Email List Search Powered by the LISTSERV Email List Manager