LISTSERV mailing list manager LISTSERV 16.0

Help for SOCNET Archives


SOCNET Archives

SOCNET Archives


SOCNET@LISTS.UFL.EDU


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

SOCNET Home

SOCNET Home

SOCNET  January 2016

SOCNET January 2016

Subject:

selected Latest Complexity Digest Posts (fwd)

From:

Barry Wellman <[log in to unmask]>

Reply-To:

Barry Wellman <[log in to unmask]>

Date:

Mon, 11 Jan 2016 12:14:50 -0500

Content-Type:

TEXT/PLAIN

Parts/Attachments:

Parts/Attachments

TEXT/PLAIN (119 lines)

*****  To join INSNA, visit http://www.insna.org  *****

   Barry Wellman

    A vision is just a vision if it's only in your head
    Step by step, link by link, putting it together Streisand/Sondheim

  _______________________________________________________________________
   NetLab Network                   FRSC                    INSNA Founder
   http://www.chass.utoronto.ca/~wellman           twitter: @barrywellman
   NETWORKED:The New Social Operating System   Lee Rainie & Barry Wellman
   MIT Press            http://amzn.to/zXZg39       Print $18  Kindle $11
   _______________________________________________________________________


---------- Forwarded message ----------
Date: Mon, 11 Jan 2016 12:02:44 +0000
From: "[utf-8] Complexity Digest" <[log in to unmask]>
Reply-To: [log in to unmask]
To: "[utf-8] Barry" <[log in to unmask]>
Subject: [utf-8] Latest Complexity Digest Posts

Learn about the latest and greatest related to complex systems research. More at http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=1b9684c19c&e=55e25a0e3e


Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection

    Since some common approaches to the study of molecular adaptation may not be optimal for answering questions regarding within-host virus evolution, we have developed an alternative approach that estimates an absolute rate of molecular adaptation from serially-sampled viral populations. Here, we extend this framework to include sampling error when estimating the rate of adaptation, which is an important addition when analyzing historical data sets obtained in the pre-HAART era, for which the number of sequences per time point is often limited. We applied this extended method to a cohort of 24 pediatric HIV-1 patients and discovered that viral adaptation is strongly associated with the rate of disease progression, which is in contrast to previous analyses of these data that did not find a significant association. Strikingly, this results in a negative relationship between the rate of viral adaptation and viral population size, which is unexpected under standard
micro-evolutionary models since larger populations are predicted to fix more mutations per unit time than smaller populations. Our findings indicate that the negative correlation is unlikely to be driven by relaxation of selective constraint, but instead by significant variation in host immune responses. Consequently, this supports a previously proposed non-linear model of viral adaptation in which host immunity imposes counteracting effects on population size and selection.

Raghwani J, Bhatt S, Pybus OG (2016) Faster Adaptation in Smaller Populations: Counterintuitive Evolution of HIV during Childhood Infection. PLoS Comput Biol 12(1): e1004694. http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=a6cb0ab373&e=55e25a0e3e  (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=ba09379b11&e=55e25a0e3e) ;

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=85aa65b8ff&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=733b65eaab&e=55e25a0e3e)



Tracking Urban Activity Growth Globally with Big Location Data

    In recent decades the world has experienced rates of urban growth unparalleled in any other period of history and this growth is shaping the environment in which an increasing proportion of us live. In this paper we use a longitudinal dataset from Foursquare, a location-based social network, to analyse urban growth across 100 major cities worldwide.
Initially we explore how urban growth differs in cities across the world. We show that there exists a strong spatial correlation, with nearby pairs of cities more likely to share similar growth profiles than remote pairs of cities. Subsequently we investigate how growth varies inside cities and demonstrate that, given the existing local density of places, higher-than-expected growth is highly localised while lower-than-expected growth is more diffuse. Finally we attempt to use the dataset to characterise competition between new and existing venues. By defining a measure based on the change in throughput of a venue before and after the opening of a new nearby venue, we demonstrate which venue types have a positive effect on venues of the same type and which have a negative effect. For example, our analysis confirms the hypothesis that there is large degree of competition between bookstores, in the sense that existing bookstores normally experience a notable drop in footfall
after a new bookstore opens nearby. Other place categories however, such as Airport Gates or Museums, have a cooperative effect and their presence fosters higher traffic volumes to nearby places of the same type.

Tracking Urban Activity Growth Globally with Big Location Data
Matthew Daggitt, Anastasios Noulas, Blake Shaw, Cecilia Mascolo

http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=84fa3c6ded&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=bb307332b9&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=277427225b&e=55e25a0e3e)



The angular nature of road networks

    Road networks are characterised by several structural and geometric properties. Their topological structure determines partially its hierarchical arrangement, but since these are networks that are spatially situated and, therefore, spatially constrained, to fully understand the role that each road plays in the system it is fundamental to characterize the influence that geometrical properties have over the network's behaviour. In this work, we percolate the UK's road network using the relative angle between street segments as the occupation probability. We argue that road networks undergo a non-equilibrium first-order phase transition at the moment the main roads start to interconnect forming the spanning percolation cluster. The percolation process uncovers the hierarchical structure of the roads in the network, and as such, its classification. Furthermore, this technique serves to extract the set of most important roads of the network and to create a hierarchical index !
 for
each road in the system.

The angular nature of road networks
Carlos Molinero, Roberto Murcio, Elsa Arcaute

http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=377b524b14&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=2bfa5594cf&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=c01a9b642f&e=55e25a0e3e)



Understanding the group dynamics and success of teams

    Complex problems often require coordinated group effort and can consume significant resources, yet our understanding of how teams form and succeed has been limited by a lack of large-scale, quantitative data. We analyze activity traces and success levels for ~150,000 self-organized, online team projects. While larger teams tend to be more successful, workload is highly focused across the team, with only a few members performing most work. We find that highly successful teams are significantly more focused than average teams of the same size, that their members have worked on more diverse sets of projects, and the members of highly successful teams are more likely to be core members or 'leads' of other teams. The relations between team success and size, focus and especially team experience cannot be explained by confounding factors such as team age or external contributions from non-team members nor by group mechanisms such as social loafing. Taken together, these features
point to organizational principles that may maximize the success of collaborative endeavors.

Understanding the group dynamics and success of teams
Michael Klug, James P. Bagrow

http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=4ba3d930f6&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=f1caabe1f0&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=63924f0fb2&e=55e25a0e3e)



On the origin of burstiness in human behavior: The wikipedia edits case

    A number of human activities exhibit a bursty pattern, namely periods of very high activity that are followed by rest periods. Records of this process generate time series of events whose inter-event times follow a probability distribution that displays a fat tail. The grounds for such phenomenon are not yet clearly understood. In the present work we use the freely available Wikipedia's editing records to tackle this question by measuring the level of burstiness, as well as the memory effect of the editing tasks performed by different editors in different pages. Our main finding is that, even though the editing activity is conditioned by the circadian 24 hour cycle, the conditional probability of an activity of a given duration at a given time of the day is independent from the latter. This suggests that the human activity seems to be related to the high "cost" of starting an action as opposed to the much lower "cost" of continuing that action.

On the origin of burstiness in human behavior: The wikipedia edits case
Yerali Gandica, Joao Carvalho, Fernando Sampaio Dos Aidos, Renaud Lambiotte, and Timoteo Carletti

http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=4507cf2cd6&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=709e742703&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage2.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=af1ba0a699&e=55e25a0e3e)



Interacting Behavior and Emerging Complexity

    Can we quantify the change of complexity throughout evolutionary processes? We attempt to address this question through an empirical approach. In very general terms, we simulate two simple organisms on a computer that compete over limited available resources. We implement Global Rules that determine the interaction between two Elementary Cellular Automata on the same grid. Global Rules change the complexity of the state evolution output which suggests that some complexity is intrinsic to the interaction rules themselves. The largest increases in complexity occurred when the interacting elementary rules had very little complexity, suggesting that they are able to accept complexity through interaction only. We also found that some Class 3 or 4 CA rules are more fragile than others to Global Rules, while others are more robust, hence suggesting some intrinsic properties of the rules independent of the Global Rule choice. We provide statistical mappings of Elementary Cellular
Automata exposed to Global Rules and different initial conditions onto different complexity classes.

Interacting Behavior and Emerging Complexity
Alyssa Adams, Hector Zenil, Eduardo Hermo Reyes, Joost Joosten

http://unam.us4.list-manage1.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=33d7b1837c&e=55e25a0e3e

See it on Scoop.it (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=89acef7e3a&e=55e25a0e3e) , via Papers (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=0f47ed12ea&e=55e25a0e3e)

==============================================
Sponsored by the Complex Systems Society.
Founding Editor: Gottfried Mayer.
Editor-in-Chief: Carlos Gershenson.

You can contribute to Complexity Digest selecting one of our topics (http://unam.us4.list-manage.com/track/click?u=0eb0ac9b4e8565f2967a8304b&id=635b503248&e=55e25a0e3e ) and using the "Suggest" button.
==============================================
==============================================

_____________________________________________________________________
SOCNET is a service of INSNA, the professional association for social
network researchers (http://www.insna.org). To unsubscribe, send
an email message to [log in to unmask] containing the line
UNSUBSCRIBE SOCNET in the body of the message.

Top of Message | Previous Page | Permalink

Advanced Options


Options

Log In

Log In

Get Password

Get Password


Search Archives

Search Archives


Subscribe or Unsubscribe

Subscribe or Unsubscribe


Archives

October 2020
September 2020
August 2020
July 2020
June 2020
May 2020
April 2020
March 2020
February 2020
January 2020
December 2019
November 2019
October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008, Week 62
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
December 2004
November 2004
October 2004
September 2004
August 2004
July 2004
June 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
November 2003
October 2003
September 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
November 2002
October 2002
September 2002
August 2002
July 2002
June 2002
May 2002
April 2002
March 2002
February 2002
January 2002
December 2001
November 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001

ATOM RSS1 RSS2



LISTS.UFL.EDU

CataList Email List Search Powered by the LISTSERV Email List Manager