LISTSERV mailing list manager LISTSERV 16.0

Help for SOCNET Archives


SOCNET Archives

SOCNET Archives


SOCNET@LISTS.UFL.EDU


View:

Message:

[

First

|

Previous

|

Next

|

Last

]

By Topic:

[

First

|

Previous

|

Next

|

Last

]

By Author:

[

First

|

Previous

|

Next

|

Last

]

Font:

Proportional Font

LISTSERV Archives

LISTSERV Archives

SOCNET Home

SOCNET Home

SOCNET  August 2018

SOCNET August 2018

Subject:

selected Latest Complexity Digest Posts (fwd)

From:

Barry Wellman <[log in to unmask]>

Reply-To:

Barry Wellman <[log in to unmask]>

Date:

Mon, 27 Aug 2018 09:22:01 -0400

Content-Type:

MULTIPART/MIXED

Parts/Attachments:

Parts/Attachments

TEXT/PLAIN (161 lines)

*****  To join INSNA, visit http://www.insna.org  *****

With fond memories of Lin and Sue Freeman

   Barry Wellman

   Step by step, link by link, putting it together--Streisand/Sondheim
        The earth to be spannd, connected by network--Walt Whitman
              It's Always Something--Roseanne Roseannadanna
  _______________________________________________________________________
   NetLab Network      			                            FRSC
   Distinguished Visiting Scholar   Social Media Lab   Ryerson University
         Founder, International Network for Social Network Analysis
   NETWORKED: The New Social Operating System  Lee Rainie & Barry Wellman
   https://urldefense.proofpoint.com/v2/url?u=http-3A__www.chass.utoronto.ca_-7Ewellman&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=doFDhWJf0d0o4AwgrzuK6wRbJijoPiKZ2Ni5St1s7NE&e=            https://urldefense.proofpoint.com/v2/url?u=http-3A__amzn.to_zXZg39&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=TYRQpQ4QhXyXsLQupwNphGuAdq3YGBWxTFnOesBtSk8&e=
              https://urldefense.proofpoint.com/v2/url?u=https-3A__en.wikipedia.org_wiki_Barry-5FWellman&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=zhqxa9YOQqaIIku3wEduNUQzpVQgLREJA7b6uFNU82M&e=
   _______________________________________________________________________


---------- Forwarded message ----------
Date: Mon, 27 Aug 2018 11:05:13 +0000
From: "[utf-8] Complexity Digest" <[log in to unmask]>
Reply-To: [log in to unmask]
To: "[utf-8] Barry" <[log in to unmask]>
Subject: [utf-8] Latest Complexity Digest Posts

Learn about the latest and greatest related to complex systems research. More at https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D5efd20b3d5-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=PZ4rtIbQGaMJMgMwJO6gj8zkPWUzveCjo4-iDVze5-Q&e=



Advances on the Resilience of Complex Networks (Complexity Special Issue)

    A common property of many complex systems is resilience, that is, the ability of the system to react to perturbations, internal failures, and environmental events by absorbing the disturbance and/or rebuild to maintain its functions. Nowadays, understanding how complex systems demonstrate resilience is critical in many different fields, because examples of collapses and crises caused by low resilience are more and more spreading all over the world including transportation, financial, energy, communication, and ecological systems.

Therefore, in the last decade, the topic of resilience has grown a lot in popularity. Studies on resilience are popular in multiple disciplines, such as ecology, environmental science, computer science, engineering, management science, economics, and phycology. They investigate resilience of a broad variety of complex systems involving individuals, teams, ecosystems, organizations, communities, supply chains, financial networks, computer networks, and building infrastructures.

Despite this multidisciplinary nature, two main perspectives in the conceptualization of resilience are recognized, that is, the static and dynamic ones [1ˇˇ4]. The resilience is static when it focuses on the ability of the system to absorb disturbance and bounce back to the original equilibrium state, maintaining its core functions when shocked. In such a case, the resilience is linked to the ability to recover the original shape and features once stretched (robustness) and the capacity of the system to take alternative positions to respond better to change (flexibility). The dynamic perspective focuses on the ability of the system to evolve over time moving towards a new more favorable equilibrium state. According to this perspective, resilience concerns the adaptive capacity of the system, which is able to react to disturbance by changing its structure, processes, and functions in order to increase its ability to persist [5].

This special issue collects nine papers concerning resilience of complex systems, which accords well with the main features summarized above. They concern studies investigating resilience of complex systems in diverse disciplines (engineering, management science, computer science, economics, and organization science) and adopting both the static and dynamic perspectives. Their aim is to identify the main factors and dynamics influencing resilience of diverse systems (water system infrastructures, organizational teams, financial markets, wireless sensor network, and urban system) to a variety of unexpected and negative events


Complexity
Volume 2018, Article ID 8756418, 3 pages
https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D7027485cb5-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=0_8GHej21OBNTbEJsOqS5qsHd9_xvHCFYNuqcw-qNSA&e=
Editorial
Advances on the Resilience of Complex Networks
Ilaria Giannoccaro, Vito Albino, and Anand Nair

Source: www.hindawi.com (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D344cb43e44-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=Qo0J2gygk2FBCkAVmRk1LuVLx5IroDiBSms8GoJ87hc&e=)



Resilience of Complex Systems: State of the Art and Directions for Future Research

    This paper reviews the state of the art on the resilience of complex systems by embracing different research areas and using bibliometric tools. The aim is to identify the main intellectual communities and leading scholars and to synthesize key knowledge of each research area. We also carry out a comparison across the research areas, aimed at analyzing how resilience is approached in any field, how the topic evolved starting from the ecological field of study, and the level of cross-fertilization among domains. Our analysis shows that resilience of complex systems is a multidisciplinary concept, which is particularly important in the fields of environmental science, ecology, and engineering. Areas of recent and increasing interest are also operation research, management science, business, and computer science. Except for environmental science and ecology, research is fragmented and carried out by isolated research groups. Integration is not only limited inside each field
but also between research areas. In particular, we trace the citation links between different research areas and find a very limited number, revealing a scarce cross-fertilization among domains. We conclude by providing some directions for future research.


Complexity
Volume 2018, Article ID 3421529, 44 pages
https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D3cb2da3951-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=IjJ6sl941PJm8oLnMwfpql4gW-ixmRY_0FqGjFIWbNw&e=
Review Article
Resilience of Complex Systems: State of the Art and Directions for Future Research
Luca Fraccascia, Ilaria Giannoccaro, and Vito Albino

Source: www.hindawi.com (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D1266ab65c4-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=23wHljHsks7ANQ3I0frcgFfuBeZZov5YHcAOcqOxHVs&e=)



Sequences of purchases in credit card data reveal lifestyles in urban populations

    https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Dd03212bd6c-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=gPN-fkMPz-RPq84m3x3UzokcYqBY7YRbiUEz-4Fiqt4&e=

Zipf-like distributions characterize a wide set of phenomena in physics, biology, economics, and social sciences. In human activities, Zipf's law describes, for example, the frequency of appearance of words in a text or the purchase types in shopping patterns. In the latter, the uneven distribution of transaction types is bound with the temporal sequences of purchases of individual choices. In this work, we define a framework using a text compression technique on the sequences of credit card purchases to detect ubiquitous patterns of collective behavior. Clustering the consumers by their similarity in purchase sequences, we detect five consumer groups. Remarkably, post checking, individuals in each group are also similar in their age, total expenditure, gender, and the diversity of their social and mobility networks extracted from their mobile phone records. By properly deconstructing transaction data with Zipf-like distributions, this method uncovers sets of significant
sequences that reveal insights on collective human behavior.


Sequences of purchases in credit card data reveal lifestyles in urban populations
Riccardo Di Clemente, Miguel Luengo-Oroz, Matias Travizano, Sharon Xu, Bapu Vaitla & Marta C. GonzŠlez
Nature Communicationsvolume 9, Article number: 3330 (2018)

Source: www.nature.com (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Dafda5d7640-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=Y3lQC207porJrXvDa7ICUi9eYWa1h5ubg7RdqU6UkD4&e=)


Self-Optimization in Continuous-Time Recurrent Neural Networks

    https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D7fb3d75d03-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=bUApKzxwVNXm-aqSv29Z8n70RKLt3DzoxfZY2-iOQtA&e=

A recent advance in complex adaptive systems has revealed a new unsupervised learning technique called self-modeling or self-optimization. Basically, a complex network that can form an associative memory of the state configurations of the attractors on which it converges will optimize its structure: it will spontaneously generalize over these typically suboptimal attractors and thereby also reinforce more optimal attractorsˇˇeven if these better solutions are normally so hard to find that they have never been previously visited. Ideally, after sufficient self-optimization the most optimal attractor dominates the state space, and the network will converge on it from any initial condition. This technique has been applied to social networks, gene regulatory networks, and neural networks, but its application to less restricted neural controllers, as typically used in evolutionary robotics, has not yet been attempted. Here we show for the first time that the self-optimization
process can be implemented in a continuous-time recurrent neural network with asymmetrical connections. We discuss several open challenges that must still be addressed before this technique could be applied in actual robotic scenarios.


Self-Optimization in Continuous-Time Recurrent Neural Networks

Mario Zarco and Tom Froese

Front. Robot. AI, 21 August 2018 | https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D60db0b3142-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=KgnYWwkhcEcd_40lETydiIk3iRHS4zRs-OQNfCzxi6M&e=

Source: www.frontiersin.org (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D50ed660ad4-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=0vZZ1pD1BoChDD34jK9Md8gGtXRTpfxpl_NFLC0mm9U&e=)



An information-theoretic approach to self-organisation: Emergence of complex interdependencies in coupled dynamical systems

    Self-organisation lies at the core of fundamental but still unresolved scientific questions, and holds the promise of de-centralised paradigms crucial for future technological developments. While self-organising processes have been traditionally explained by the tendency of dynamical systems to evolve towards specific configurations, or attractors, we see self-organisation as a consequence of the interdependencies that those attractors induce. Building on this intuition, in this work we develop a theoretical framework for understanding and quantifying self-organisation based on coupled dynamical systems and multivariate information theory. We propose a metric of global structural strength that identifies when self-organisation appears, and a multi-layered decomposition that explains the emergent structure in terms of redundant and synergistic interdependencies. We illustrate our framework on elementary cellular automata, showing how it can detect and characterise the
emergence of complex structures.


An information-theoretic approach to self-organisation: Emergence of complex interdependencies in coupled dynamical systems
Fernando Rosas, Pedro A.M. Mediano, Martin Ugarte, Henrik J. Jensen

Source: arxiv.org (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Db396698e41-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=232twz5muqJS3ZWXL7XBWrMGrcQyKyvNcDJIHXU_BtE&e=)



Complexity and Resilience in the Social and Ecological Sciences

    https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D3a5771da6a-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=ZK61TkY1sVCLs--ijJOBCe9OVg9vBm_jFkvxqXtsmhk&e=

This book introduces a new approach to environmental sociology, by integrating complexity-informed social science, Marxian ecological theory, and resilience-based human ecology. It argues that sociologists have largely ignored developments in ecology which move beyond functionalist approaches to systems analysis, and as a result, environmental sociology has failed to capitalise not only on the analytical promise of resilience ecology, but on complementary developments in complexity theory. By tracing the origins and discussing current developments in each of these areas, it offers several paths to interdisciplinary dialogue. Eoin Flaherty argues that complexity theory and Marxian ecology can enhance our understanding of the social aspect of social-ecological systems, whilst a resilience approach can sharpen the analytical power of environmental sociology.


Complexity and Resilience in the Social and Ecological Sciences
Eoin Flaherty

Springer

Source: link.springer.com (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D9bb3d2833b-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=iyYpjYz3WZre2urM9xenHV8iPOnZ2TDwLWsiCnuMG8A&e=)



A Methodology for Evaluating Algorithms That Calculate Social Influence in Complex Social Networks

    Online social networks are complex systems often involving millions or even billions of users. Understanding the dynamics of a social network requires analysing characteristics of the network (in its entirety) and the users (as individuals). This paper focuses on calculating userˇˇs social influence, which depends on (i) the userˇˇs positioning in the social network and (ii) interactions between the user and all other users in the social network. Given that data on all users in the social network is required to calculate social influence, something not applicable for todayˇˇs social networks, alternative approaches relying on a limited set of data on users are necessary. However, these approaches introduce uncertainty in calculating (i.e., predicting) the value of social influence. Hence, a methodology is proposed for evaluating algorithms that calculate social influence in complex social networks; this is done by identifying the most accurate and precise algorithm. The proposed
methodology extends the traditional ground truth approach, often used in descriptive statistics and machine learning. Use of the proposed methodology is demonstrated using a case study incorporating four algorithms for calculating a userˇˇs social influence.


Complexity
Volume 2018, Article ID 1084795, 20 pages
https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Dcc5b204963-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=2fPvgX9KSWiqiqxPt_Yoz2qZU7ru3QEwQpeEvKxsWLY&e=
A Methodology for Evaluating Algorithms That Calculate Social Influence in Complex Social Networks
Vanja Smailovic, Vedran Podobnik and Ignac Lovrek

Source: www.hindawi.com (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3Dccf05067d3-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=tkNjiGGtWN1sSQH-6plm9K56dN7ocEAL72Rp7JeUyGY&e=)


==============================================
Sponsored by the Complex Systems Society.
Founding Editor: Gottfried Mayer.
Editor-in-Chief: Carlos Gershenson.

You can contribute to Complexity Digest selecting one of our topics (https://urldefense.proofpoint.com/v2/url?u=https-3A__unam.us4.list-2Dmanage.com_track_click-3Fu-3D0eb0ac9b4e8565f2967a8304b-26id-3D94de780297-26e-3D55e25a0e3e&d=DwIFAw&c=pZJPUDQ3SB9JplYbifm4nt2lEVG5pWx2KikqINpWlZM&r=uXI5O6HThk1ULkPyaT6h2Ws3RKNKSY__GQ4DuS9UHhs&m=OE726GaiA2441fxpJvO5F6SrAELeX9kWFwYNjVh7O3s&s=jp9EjYk4G2kZ_qAzrPWGkQx9-avkCoPurEGFzQBbO-Q&e= ) and using the "Suggest" button.
==============================================
==============================================
_____________________________________________________________________
SOCNET is a service of INSNA, the professional association for social
network researchers (http://www.insna.org). To unsubscribe, send
an email message to [log in to unmask] containing the line
UNSUBSCRIBE SOCNET in the body of the message.

Top of Message | Previous Page | Permalink

Advanced Options


Options

Log In

Log In

Get Password

Get Password


Search Archives

Search Archives


Subscribe or Unsubscribe

Subscribe or Unsubscribe


Archives

October 2019
September 2019
August 2019
July 2019
June 2019
May 2019
April 2019
March 2019
February 2019
January 2019
December 2018
November 2018
October 2018
September 2018
August 2018
July 2018
June 2018
May 2018
April 2018
March 2018
February 2018
January 2018
December 2017
November 2017
October 2017
September 2017
August 2017
July 2017
June 2017
May 2017
April 2017
March 2017
February 2017
January 2017
December 2016
November 2016
October 2016
September 2016
August 2016
July 2016
June 2016
May 2016
April 2016
March 2016
February 2016
January 2016
December 2015
November 2015
October 2015
September 2015
August 2015
July 2015
June 2015
May 2015
April 2015
March 2015
February 2015
January 2015
December 2014
November 2014
October 2014
September 2014
August 2014
July 2014
June 2014
May 2014
April 2014
March 2014
February 2014
January 2014
December 2013
November 2013
October 2013
September 2013
August 2013
July 2013
June 2013
May 2013
April 2013
March 2013
February 2013
January 2013
December 2012
November 2012
October 2012
September 2012
August 2012
July 2012
June 2012
May 2012
April 2012
March 2012
February 2012
January 2012
December 2011
November 2011
October 2011
September 2011
August 2011
July 2011
June 2011
May 2011
April 2011
March 2011
February 2011
January 2011
December 2010
November 2010
October 2010
September 2010
August 2010
July 2010
June 2010
May 2010
April 2010
March 2010
February 2010
January 2010
December 2009
November 2009
October 2009
September 2009
August 2009
July 2009
June 2009
May 2009
April 2009
March 2009
February 2009
January 2009
December 2008
November 2008
October 2008
September 2008
August 2008
July 2008, Week 62
July 2008
June 2008
May 2008
April 2008
March 2008
February 2008
January 2008
December 2007
November 2007
October 2007
September 2007
August 2007
July 2007
June 2007
May 2007
April 2007
March 2007
February 2007
January 2007
December 2006
November 2006
October 2006
September 2006
August 2006
July 2006
June 2006
May 2006
April 2006
March 2006
February 2006
January 2006
December 2005
November 2005
October 2005
September 2005
August 2005
July 2005
June 2005
May 2005
April 2005
March 2005
February 2005
January 2005
December 2004
November 2004
October 2004
September 2004
August 2004
July 2004
June 2004
May 2004
April 2004
March 2004
February 2004
January 2004
December 2003
November 2003
October 2003
September 2003
August 2003
July 2003
June 2003
May 2003
April 2003
March 2003
February 2003
January 2003
December 2002
November 2002
October 2002
September 2002
August 2002
July 2002
June 2002
May 2002
April 2002
March 2002
February 2002
January 2002
December 2001
November 2001
October 2001
September 2001
August 2001
July 2001
June 2001
May 2001

ATOM RSS1 RSS2



LISTS.UFL.EDU

CataList Email List Search Powered by the LISTSERV Email List Manager