Speaker: Dr. Binayak P. Mohanty Professor and Hydrologist Texas A & M University

Title: Scaling, Physical Controls, and Effective Parameters in Multi\Scale Soil Hydrology C Current Understanding and Future Opportunities!

Date: Friday, February 5, 2010

Time: Seminar: 3:00 PM C 5:00 PM

Location: McCarty Hall A Room G186




Soil moisture is the natural state variable of the land surface critical to climate feedback, hydrology, and agriculture. Its temporal and spatial variability over catchment areas affects surface and subsurface runoff, modulates evaporation and transpiration, determines the extent of groundwater recharge and contaminant transport, and initiates or sustains feedback between the land surface and the atmosphere. At a particular point in time soil moisture content is influenced by: (1) the precipitation history, (2) the texture of the soil, which determines the water\holding capacity, (3) the slope of the land surface, which affects runoff and infiltration, and (4) the vegetation and land cover, which influences evapotranspiration and deep percolation. In other terms the partitioning of soil moisture to recharge to the groundwater, evapotranspiration to the atmosphere, and surface/subsurface runoff to the streams at different spatio\temporal scales and under different hydro\climatic conditions pose one of the greatest challenges to weather and climate prediction, water resources availability, sustainability, quality, and variability in agricultural, range and forested watersheds and hydro\climatic conditions. To date very few studies have been made to quantitatively understand the multi\scale dynamics of soil

moisture in land\surface hydrologic systems. In this context we hypothesize that: 1) soil moisture variability is dominated by soil properties at the field scale, topographic features at the

catchment/watershed scale, and vegetation characteristics and precipitation patterns at the regional scale and beyond; and 2) ensemble hydrologic fluxes (evapotranspiration, infiltration, and shallow ground water recharge) across the vadose zone at the corresponding scale can be effectively represented by one or more soil, topography, vegetation, or climate scale factors. Using ground\based and various active and passive microwave remote sensing measurements during the NASA field campaigns in the past decade including Southern Great Plains Experiments (SGP97, SGP99), Soil Moisture Experiment (SMEX02, SMEX05), and Cloud Land Atmosphere Interaction Study (CLASIC 2007), we test these hypotheses. Results of our ongoing  study and the future need related to the better understanding of soil moisture controls, scaling properties, and effective soil hydraulic parameters atdifferent scales will be presented.

From: Reddy, K. Ramesh
Sent: Monday, February 01, 2010 10:51 AM
To: Graham, Wendy D.
Cc: Mckee,Kathleen A
Subject: FW: Distinguished Speaker Seminar: Friday February 5, 2010

Wendy: Can you forward this seminar announcement to WI faculty .  Thanks.





K. Ramesh Reddy | Chair and Graduate Research Professor |

University of Florida | IFAS | Soil and Water Science Department |

PO Box 110510 | 106 Newell Hall.
Gainesville, FL 32611-0510 | USA
PH 352-392-1804 | FAX 352-392-3399
EMAIL: [log in to unmask] |


Additional Contacts:  Ms. Kelly Jacoby [log in to unmask] or Ms. Cheryl Combs [log in to unmask] | Tel: 352-392-1803


The Soil and Water Science Newsletter "MYAKKA" is available at:  The Soil and Water Science Fall 2009 Newsletter MYAKKA is now available for your reading at:      Please forward this message to your contacts.  If you need a hard copy of the newsletter, please contact Ms. Ms. Kelly Jacoby [log in to unmask] or Ms. Cheryl Combs [log in to unmask]