Print

Print


*****  To join INSNA, visit http://www.insna.org  *****

Hi,

Indeed my formulation was not clear. Refining my statement, I think a possible solution can appear:

- Being evenly distributed in the network would mean that the distance (shortest paths) between the nodes bearing this attribute value is comparably close to the distance between the same number of nodes randomly picked from the entire set of nodes of the network.

Does it make sense? 2 things:
- it does not depend on a notion of communities
- I might be wrong but the formulation above seems quite computationally intensive

Clement

 
------------
A new MOOC by EMLYON
CODAPPS : Coding Mobile Apps for Entrepreneurs.
https://www.coursera.org/learn/codapps 

Assistant Professor EMLYON Business School
+33 (0)4 78 33 77 25
Mobile : +33(0)6 59 08 33 92

Skype and Twitter : @seinecle
http://www.clementlevallois.net



-----Message d'origine-----
De : Vincenzo Nicosia [mailto:[log in to unmask]] 
Envoyé : mardi 12 janvier 2016 11:56
À : LEVALLOIS Clément
Cc : [log in to unmask]
Objet : Re: [SOCNET] How to measure the distribution of an attribute among the nodes of a network?

On Tue, Jan 12, 2016 at 11:53:30AM +0100, LEVALLOIS Clément wrote:
> Hi Vincenzo,
> 
> Thanks for your prompt response. Yes I have but for the issue at hand I'd need to have a network wide distribution measure, independent of the notion of clusters / communities.
> 

[cut]

> >    I would like to know to what extent the flavor “raspberry” is a value
> >    which is evenly distributed in the network, or to the contrary, just found
> >    in one community. A low value would mean that only nodes from a 
> > subregion
       ^^^^^^^^^^^^^^^^

Then I probably misunderstood your question. How do you define "network regions" if you don't have a notion of classes/groups, or a metric embedding of your network?

HND

Enzo Nicosia

--
[ Enzo Nicosia - School of Mathematical Sciences - Queen Mary UL ] [ -- v.nicosia [at] qmul.ac.uk -- katolaz [at] yahoo [dot] it -- ] [ -- web @QMUL: http://maths.qmul.ac.uk/~vnicosia/index.html  -- ] [ twitter:@KatolaZ -- jabber:[log in to unmask] - skype: katolaz ]
----
Ce message electronique et tous les fichiers attaches qu'il contient sont confidentiels et destines exclusivement à l'usage de la personne à laquelle ils sont adresses. Si vous avez reçu ce message par erreur, merci de le retourner à son metteur. Les idees et opinions presentees dans ce message sont celles de son auteur, et ne representent pas necessairement celles de l'institution ou entite affiliee dont l'auteur est l'employe. La publication, l'usage, la distribution, l'impression ou la copie non autorisee de ce message et des attachements qu'il contient sont strictement interdits.

This email and any files transmitted with it are confidential and intended solely for the use of the individual or entity to whom they are addressed. If you have received this email in error please return it to the sender. The ideas and views expressed in this email are solely those of its author, and do not necessarily represent the views of the institution or company of which the author is an employee. Unauthorized publication, use, distribution, printing or copying of this e-mail or any attached files is strictly forbidden.

_____________________________________________________________________
SOCNET is a service of INSNA, the professional association for social
network researchers (http://www.insna.org). To unsubscribe, send
an email message to [log in to unmask] containing the line
UNSUBSCRIBE SOCNET in the body of the message.