*****  To join INSNA, visit  *****

going to the 3rd funeral in 3 months.
The non-joys of older age.
(We're great, though)
   Barry Wellman

   Step by step, link by link, putting it together--Streisand/Sondheim
        The earth to be spannd, connected by network--Walt Whitman
              It's Always Something--Roseanne Roseannadanna

              A day like all days, filled with those events
          that alter and illuminate our times--Walter Cronkite
   NetLab Network      			                            FRSC
   Distinguished Visiting Scholar   Social Media Lab   Ryerson University
         Founder, International Network for Social Network Analysis
   NETWORKED: The New Social Operating System  Lee Rainie & Barry Wellman  

---------- Forwarded message ----------
Date: Mon, 19 Nov 2018 12:05:53 +0000
From: "[utf-8] Complexity Digest" <[log in to unmask]>
Reply-To: [log in to unmask]
To: "[utf-8] Barry" <[log in to unmask]>
Subject: [utf-8] Latest Complexity Digest Posts

Learn about the latest and greatest related to complex systems research. More at

Charting the Next Pandemic

This book provides an introduction to the computational and complex systems modeling of the global spreading of infectious diseases. The latest developments in the area of contagion processes modeling are discussed, and readers are exposed to real world examples of data-model integration impacting the decision-making process. Recent advances in computational science and the increasing availability of real-world data are making it possible to develop realistic scenarios and real-time forecasts of the global spreading of emerging health threats.

The first part of the book guides the reader through sophisticated complex systems modeling techniques with a non-technical and visual approach, explaining and illustrating the construction of the modern framework used to project the spread of pandemics and epidemics. Models can be used to transform data to knowledge that is intuitively communicated by powerful infographics and for this reason, the second part of the book focuses on a set of charts that illustrate possible scenarios of future pandemics. The visual atlas contained allows the reader to identify commonalities and patterns in emerging health threats, as well as explore the wide range of models and data that can be used by policy makers to anticipate trends, evaluate risks and eventually manage future events.

Charting the Next Pandemic puts the reader in the position to explore different pandemic scenarios and to understand the potential impact of available containment and prevention strategies. This book emphasizes the importance of a global perspective in the assessment of emerging health threats and captures the possible evolution of the next pandemic, while at the same time providing the intelligence needed to fight it. The text will appeal to a wide range of audiences with diverse technical backgrounds.

Charting the Next Pandemic
Modeling Infectious Disease Spreading in the Data Science Age
Ana Pastore y Piontti, Nicola Perra, Luca Rossi, Nicole Samay, Alessandro Vespignani

Source: (

Information | Special Issue : Computational Social Science

    The last centuries have seen a great surge in our understanding and control of ˙˙simple˙˙ physical, chemical, and biological processes through data analysis and the mathematical modelling of their underlying dynamics. Encouraged by its success, researchers have recently embarked on extending such approaches to gain qualitative and quantitative understanding of social and economic systems and the dynamics in and of them. This has become possible due to the massive amounts of data generated by information-communication technologies and the unprecedented fusion of off- and on-line human activity. However, due to the presence of adaptability, feedback loops, and strong heterogeneities of the individuals and interactions making up our modern digital societies, it is yet unclear if statistical ˙˙laws˙˙ of socio-technical behaviour even exist, akin to those found for natural processes. Such continuing search has resulted in the fields of computational social science and social network
science, which share the goal of first analysing social phenomena and then modelling them with enough accuracy to make reliable predictions. This Special Issue invites contributions to such fields of study, with focus on the temporal evolution and dynamics of complex social systems. As topics of interest, we propose research on more realistic models of social dynamics, the use of statistical inference, machine learning, and other cross-disciplinary techniques to complement the analysis of social dynamics, and the creation of loops between data acquisition and model analysis to increase accuracy in the prediction of social trends. We hope this Special Issue will bring together expertise from a wide range of research communities interested in similar topics, including computational social science, network science, information science, and complexity science.

Source: (

Cities, from Information to Interaction

From physics to the social sciences, information is now seen as a fundamental component of reality. However, a form of information seems still underestimated, perhaps precisely because it is so pervasive that we take it for granted: the information encoded in the very environment we live in. We still do not fully understand how information takes the form of cities, and how our minds deal with it in order to learn about the world, make daily decisions, and take part in the complex system of interactions we create as we live together. This paper addresses three related problems that need to be solved if we are to understand the role of environmental information: (1) the physical problem: how can we preserve information in the built environment? (2) The semantic problem: how do we make environmental information meaningful? and (3) the pragmatic problem: how do we use environmental information in our daily lives? Attempting to devise a solution to these problems, we introduce a
three-layered model of information in cities, namely environmental information in physical space, environmental information in semantic space, and the information enacted by interacting agents. We propose forms of estimating entropy in these different layers, and apply these measures to emblematic urban cases and simulated scenarios. Our results suggest that ordered spatial structures and diverse land use patterns encode information, and that aspects of physical and semantic information affect coordination in interaction systems.

Cities, from Information to Interaction.
Netto, V.M.; Brigatti, E.; Meirelles, J.; Ribeiro, F.L.; Pace, B.; Cacholas, C.; Sanches, P.
Entropy 2018, 20, 834.

Source: (

Sponsored by the Complex Systems Society.
Founding Editor: Gottfried Mayer.
Editor-in-Chief: Carlos Gershenson.

You can contribute to Complexity Digest selecting one of our topics ( ) and using the "Suggest" button.

SOCNET is a service of INSNA, the professional association for social
network researchers ( To unsubscribe, send
an email message to [log in to unmask] containing the line
UNSUBSCRIBE SOCNET in the body of the message.